On the Hausdorff and Other Cluster Voronoi Diagrams

نویسندگان

  • Elena Khramtcova
  • Evanthia Papadopoulou
چکیده

The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand various generalizations of this simple concept. While many generalized Voronoi diagrams have been well studied, many others still have unsettled questions. An example of the latter are cluster Voronoi diagrams, whose sites are sets (clusters) of objects rather than individual objects. In this dissertation we study certain cluster Voronoi diagrams from the perspective of their construction algorithms and algorithmic applications. Our main focus is the Hausdorff Voronoi diagram; we also study the farthest-segment Voronoi diagram, as well as certain special cases of the farthest-color Voronoi diagram. We establish a connection between cluster Voronoi diagrams and the stabbing circle problem for segments in the plane. Our results are as follows. (1) We investigate the randomized incremental construction of the Hausdorff Voronoi diagram. We consider separately the case of non-crossing clusters, when the combinatorial complexity of the diagram is O(n) where n is the total number of points in all clusters. For this case, we present two construction algorithms that require O(n log2 n) expected time. For the general case of arbitrary clusters, we present an algorithm that requires O((m+n logn) logn) expected time and O(m+ n logn) expected space, where m is a parameter reflecting the number of crossings between clusters’ convex hulls. (2) We present an O(n) time algorithm to construct the farthest-segment Voronoi diagram of n segments, after the sequence of its faces at infinity is known. This augments the well-known linear-time framework for Voronoi diagram of points in convex position, with the ability to handle disconnected Voronoi regions. (3) We establish a connection between the cluster Voronoi diagrams (the Hausdorff and the farthest-color Voronoi diagram) and the stabbing circle problem. This implies a new method to solve the latter problem. Our method results in a near-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized incremental construction of the Hausdorff Voronoi diagram of non-crossing clusters

The Hausdorff Voronoi diagram of a set of clusters of points in the plane is a generalization of the classic Voronoi diagram, where distance between a point t and a cluster P is measured as the maximum distance, or equivalently the Hausdorff distance between t and P . The size of the diagram for non-crossing clusters is O(n ), where n is the total number of points in all clusters. In this paper...

متن کامل

A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters

In the Hausdorff Voronoi diagram of a set of point-clusters in the plane, the distance between a point t and a cluster P is measured as the maximum distance between t and any point in P while the diagram is defined in a nearest sense. This diagram finds direct applications in VLSI computer-aided design. In this paper, we consider “non-crossing” clusters, for which the combinatorial complexity o...

متن کامل

The hausdorff voronoi diagram of polygonal objects: a divide and conquer approach

We study the Hausdorff Voronoi diagram of a set S of polygonal objects in the plane, a generalization of Voronoi diagrams based on the maximum distance of a point from a polygon, and show that it is equivalent to the Voronoi diagram of S under the Hausdorff distance function. We investigate the structural and combinatorial properties of the Hausdorff Voronoi diagram and give a divide and conque...

متن کامل

Randomized Incremental Construction for the Hausdorff Voronoi Diagram of point clusters

This paper applies the randomized incremental construction (RIC) framework to computing the Hausdorff Voronoi diagram of a family of k clusters of points in the plane. The total number of points is n. The diagram is a generalization of Voronoi diagrams based on the Hausdorff distance function. The combinatorial complexity of the Hausdorff Voronoi diagram is O(n + m), where m is the total number...

متن کامل

An improved algorithm for Hausdorff Voronoi diagram for non-crossing sets∗†‡

We present an improved algorithm for building a Hausdorff Voronoi diagram (HVD) for non-crossing objects. Our algorithm runs in O(n log4 n) time, where n is the total number of points defining the objects in the plane. This improves on previous results and solves an open problem posed by Papadopoulou and Lee [15]. Moreover, our algorithm is parallelizable. In cluster computing architectures (su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016